Межзвездные перелеты: несбыточная мечта или реальная перспектива? Космическое путешествие: Межзвёздный перелет Межгалактические космические полеты

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже — с поверхности Земли). Но по замыслу авторов проекта Breakthrough Starshot все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед — к звездам.

Такелаж. Для сохранения формы паруса предполагается армировать его графеном. Некоторые композитные материалы на основе графена могут сокращаться под действием приложенного электрического напряжения для активного управления. Для стабилизации парус можно раскрутить или придать ему форму обратного конуса для пассивной самостабилизации в поле лазерного излучения. Солнечный парус. Один из главных элементов проекта — солнечный парус площадью в 16 м² и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, — это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант — это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10−9), такого как оптические материалы для световодов.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Полетный план

1. Ракета выводит на околоземную орбиту материнский корабль, содержащий десятки, сотни, тысячи или десятки тысяч зондов. 2. Зонды покидают материнский корабль, разворачивают паруса, ориентируются и занимают стартовую позицию. 3. На Земле начинает работать фазированный массив размерами 1 х 1 км из 20 млн небольших (с апертурой в 20−25 см) лазерных излучателей, фокусирующий лазерный луч на поверхности паруса. 4. Для компенсации атмосферных искажений используются опорные бакены — «искусственные звезды» в верхних слоях атмосферы, на материнском корабле, а также отраженный сигнал от паруса. 5. Зонд разгоняется лазерным лучом в течение нескольких минут до 20% от скорости света, ускорение при этом достигает 30 000 g. На протяжении всего полета, который продлится около 20 лет, лазер периодически отслеживает положение зонда. 6. По прибытии к цели, в систему Альфа Центавра, зонды пытаются обнаружить планеты и сделать их снимки во время пролета. 7. Используя парус как линзу Френеля и лазерный диод в качестве передатчика, зонд ориентируется и передает полученные данные в направлении Земли. 8. Через пять лет на Земле принимают эти данные.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.


Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot — это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50−100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.


Под звёздными парусами

Одна из ключевых деталей проекта — это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления. «Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, — говорит Любин. — Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».


Юрий Мильнер, российский бизнесмен и меценат, основатель фонда Breakthrough Initiatives: За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5−10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10−20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее — десятилетий.

Лазерная установка

Основная силовая установка звездолета не полетит к звездам — она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1х1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10−20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10−9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10−5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка.



Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически. Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot, требуются годы работы, да и $100 млн — не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры — фазированной решетки лазерных излучателей. Установка такой мощности (50−100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать — пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась. «В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, — говорит Юрий Мильнер. — И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

«Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20−25 см, — объясняет Филип Любин. — Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников — бакенов — и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».


Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13−14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия — ключевой фактор в сокращении фона, — говорит Любин. — Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле — один из главных в нашем плане проекта».


С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр — это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. — Но, — добавляет Любин, — мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale, то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету « Троицкий вариант — наука » и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

«Техника-молодежи» 1991 г. №10, с.18-19


Трибуна смелых гипотез

Владимир АЦЮКОВСКИЙ,
кандидат технических наук,
г.Жуковский Московской обл.

Возможны ли межзвездные перелеты?

Печать захлестнула волна сообщений об НЛО. Очевидцы утверждают, что видели НЛО явно техногенной природы. У них нет сомнения, что они наблюдали космические корабли инопланетных цивилизаций. Однако наше сознание отказывается принять это: для планет Солнечной системы наличие цивилизаций, кроме Земли, почти исключено, ибо на них нет условий для жизни, по крайней мере на их поверхности. Может быть, под поверхностью? Вряд ли, хотя...

А на планетах других систем жизнь, возможно, и есть, но очень уж далеко до них: ближайшие 28 звезд расположены в пределах от 4 (Ближайшая Центавра) до 13 световых лет (звезда Каптейна). Такие звезды, как Сириус А и Б, Процион А и Б, Тау-Кита, находятся внутри этого интервала. Неблизко! Если корабли будут летать туда и обратно со скоростью света, то в оба конца им потребуется от 8 до 26 лет, и это только для ближайших звезд. Не считая времени на ускорение и замедление. Вряд ли такое целесообразно, а значит, летать надо быстрее света.

Что ж, прикинем, сколько займет разгон до таких скоростей (и торможение). Ради наглядности результаты сведены в таблицу, из которой можно сразу узнать время, необходимое для достижения той или иной скорости при том или ином ускорении. Получается: если полагать допустимый срок путешествия в один конец равным одному месяцу, то лететь нужно со скоростью порядка многих десятков скоростей света, а разгоняться (и тормозиться) с ускорением многих сотен земных ускорений. М-да!.. И на все это еще где-то брать энергию! Поневоле задумаешься: осуществимы ли вообще межзвездные рейсы? Но откуда же тогда прибывают к нам НЛО? Да еще и ведут себя вызывающе: вдруг исчезают, маневрируют под прямыми углами, что-то этакое излучают... А если...

Ведь что нам, в конце концов, нужно-то? Всего лишь ответить на три вопроса:

1. Можно ли в принципе летать со скоростями, превышающими скорость света? (В школе учили, что нельзя.)

2. Можно ли сильно ускоряться, не разрушая организма? (По современным представлениям, уже 10-кратная перегрузка является предельно допустимой.)

3. Можно ли добыть энергию на разгон и торможение? (Расчет показывает - никакой термоядерной энергии на это не хватит.)

Как ни странно, на все вопросы, несмотря на скептические примечания в скобках, уже сегодня есть положительные ответы. Летать со скоростями, превышающими скорость света, нельзя только из-за запрета, наложенного А.Эйнштейном. Но с какой стати его теория относительности возведена в ранг абсолютной истины? Ведь она исходит из постулатов, то есть выдумок автора, которые сами основаны на ложных посылках. Например, в 1887 году в знаменитом опыте Майкельсона был-таки обнаружен эфирный ветер, хотя его величина и оказалась меньше ожидаемой (тогда не знали понятия пограничного слоя). Что же получается? С одной стороны, СТО - специальная теория относительности - не может существовать, если эфир есть. С другой же, ОТО - общая теория относительности, - как писал сам Эйнштейн в статьях «Об эфире» и «Эфир и теория относительности», всегда предполагает наличие эфира. Как понимать сие противоречие?

Проведенный мной критический обзор всех основных экспериментов по СТО и ОТО (см. «Логические и экспериментальные основы теории относительности. Аналитический обзор». М., МПИ, 1990, 56 с.) показал, что среди них вообще нет однозначно подтверждающих эту теорию! Вот почему она может быть сброшена со счетов, не приниматься здесь во внимание. Тем более, что еще П.Лаплас установил - скорость распространения гравитационных возмущений не менее чем в 50 млн. раз превышает скорость света, а весь опыт небесной механики, которая оперирует исключительно со статическими формулами, предполагающими бесконечно большую скорость распространения гравитации, подтверждает это. Словом, нет запрета на субсветовые скорости, ложная тревога была.

Приступим ко второму вопросу. Рассмотрим, как ускоряется космонавт? Газы ракеты давят на стенку камеры сгорания, та - на ракету, ракета - на спинку кресла, спинка кресла - на него. А тело, вся масса космонавта, пытаясь остаться в покое, деформируется и при сильных воздействиях может разрушиться. Но если бы тот же космонавт падал в поле тяжести какой-нибудь звезды, то он, хотя и ускорялся бы значительно быстрее, никакой деформации вообще бы не испытал, ибо все элементы его тела ускоряются одновременно и одинаково. То же будет, если продувать космонавта эфиром. В этом случае поток эфира - реального вязкого газа - ускорит каждый протон и космонавта в целом, без деформации тела (вспомните научно-фантастический роман А.Беляева «Ариэль»). Причем ускорение может иметь любую величину, лишь бы поток был однородным. Так что и здесь возможности есть.

И, наконец, где же взять энергию? По моим данным (см. «Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире». М., Энергоатомиздат, 1990, 280 с), эфир - реальный газ тонкой структуры, сжимаемый и вязкий. Правда, его вязкость довольно невелика, и на замедлении планет это практически не сказывается, но при больших скоростях она играет весьма заметную роль. Давление эфира огромно, более чем 2 х 10 в 29 атм (2 х 10 в 32 Н/кв. м), плотность - 8,85 х 10 в - 12 кг/куб. м (в околоземном пространстве). И как выяснилось, в нем существует природный процесс, который может поставлять нам неограниченное количество энергии в любой точке пространства порциями любой величины... Речь идет о вихрях.

Откуда обычные смерчи черпают кинетическую энергию? Она образуется самопроизвольно из потенциальной энергии атмосферы. И заметьте: если последней воспользоваться практически нельзя, то первой - можно, например, заставив смерч вращать турбину. Все знают, что смерч напоминает хобот - толще у основания. Разбор этого обстоятельства показал, что он сжимается давлением атмосферы. Внешнее по отношению к нему давление заставляет частицы газа в теле смерча двигаться по спирали в процессе сжатия. Разность сил давлений - внешнего и внутреннего (плюс центробежная сила) дает проекцию результирующей силы на траекторию движения частиц газа (рис.1) и заставляет ускоряться их в теле смерча. Оно утоньшается, а скорость движения его стенки возрастает. При этом действует закон сохранения момента количества движения mrv = const, и чем сильнее сжат смерч, тем больше скорость движения. Таким образом, над каждым смерчем трудится вся атмосфера планеты; в основе его энергии лежат плотность воздуха, равная 1 кг/куб. м, и давление, равное 1 атм (10 в 5 Н/кв. м). А в эфире плотность на 11 порядков меньше, зато давление на 29 (!) порядков выше. И в эфире тоже есть свой механизм, способный поставлять энергию. Это - ШМ, шаровая молния.

Эфиродинамическая модель ШМ единственная (!), способная объяснить в совокупности все ее особенности. И чего сегодня не хватает для получения из эфира экологически чистой энергии - так научиться создавать искусственные ШМ. Разумеется, после того, как научимся создавать условия вихреобразования в эфире. А вот этого мы не то что не умеем, но даже и не представляем, с какого боку подступиться. На редкость крепкий орешек! Обнадеживает одно: ведь природа каким-то образом ухитряется их создавать, эти ШМ! А раз так, то, возможно, когда-нибудь исхитримся и мы. И тогда отпадет необходимость во всяких там АЭС, ГЭС, ТЭС, ПЭС, ВЭС, СЭС и прочих ЭС. Имея в любом месте любое желаемое количество энергии, человечество совсем по-иному подойдет к решению экологических проблем. Конечно, при условии, что ему придется мирно уживаться на своей планете, а то, чего доброго, не только родную Землю разнесут, но и всю Солнечную систему! Видите, и с энергией вопрос может быть решен. При этом обратите внимание на немаловажную деталь - при таком способе не нужно будет ускорять и замедлять ту массу горючего, которая ныне во многом и определяет массу корабля.

Ну, а сам межзвездный корабль, как он должен быть устроен? Да хотя бы в виде уже привычной «летающей тарелки». (Рис. 2.) В ее передней части имеются два «эфирозаборника», поглощающие эфир из окружающего пространства. За ними находятся камеры вихреобразования, в которых потоки эфира закручиваются и самоуплотняются. Далее по вихрепроводам эфирные смерчи препровождаются в камеру аннигиляции, где они (с одинаковыми винтовыми движениями, но направленными противоположно; аннигилируют друг с плугом. Уплотненный эфир не сдерживается более пограничным слоем и взрывается, разлетаясь во все стороны. Назад отбрасывается реактивная струя, а вперед - поток, захватывающий весь корабль и тело космонавта, которое ускоряется без деформаций. И корабль летит опережая свет, в обычном евклидовом пространстве и в обычном времени...

А как же быть с парадоксами близнецов, увеличением массы и сокращением длин? А никак. Постулаты - они и есть постулаты - вольные выдумки, плоды свободной фантазии. И они должны быть отметены вместе с «теорией», их породившей. Ибо если человечеству настала пора решать прикладные задачи, то его не должны останавливать никакие раздутые авторитеты с их невесть откуда взявшимися умозрительными шлагбаумами.

Примечание . Упомянутые книги можно заказать по адресу: 140160, г. Жуковский Московской обл., а/я 285.

В одной только нашей Галактике расстояния между звездными системами невообразимо огромны. Если пришельцы из космоса действительно посещают Землю, уровень их технического развития должен во сто крат превосходить теперешний уровень нашего, земного.

На расстоянии в несколько световых лет

Для обозначения расстояний между звездами астрономы ввели понятие «световой год». Скорость света - самая быстрая во Вселенной: 300 ООО км/с!

Ширина нашей Галактики - 100 ООО световых лет. Чтобы покрыть такое громадное расстояние, пришельцам с других планет надо построить космический корабль, скорость которого равна или даже превышает скорость света.

Ученые полагают, что материальный объект не может двигаться быстрее скорости света. Впрочем, раньше они считали, что невозможно развить и сверхзвуковую скорость, однако в 1947 г. самолет модели «Белл Х-1» успешно преодолел звуковой барьер.

Возможно в будущем, когда у человечества накопится больше знаний о физических законах Вселенной, земляне сумеют построить космический корабль, который будет передвигаться со скоростью света и даже быстрее.

Великие путешествия

Даже если инопланетяне способны передвигаться в космическом пространстве со скоростью света, подобное путешествие должно занять многие годы. Для землян, продолжительность жизни которых составляет в среднем 80 лет, это было бы невозможно. Однако у каждого вида живых существ свой собственный жизненный цикл. Например, в Калифорнии, США, есть остистые сосны, которым уже 5000 лет.

Кто знает, сколько лет живут пришельцы? Может быть, несколько тысяч? Тогда межзвездные перелеты, длящиеся сотни лет, для них обычны.

Кратчайшие пути

Вполне вероятно, что инопланетяне нашли короткие пути через космическое пространство - гравитационные «дыры», или искажения пространства, образованные силой тяжести. Такие места во Вселенной могли бы стать своего рода мостами - кратчайшими путями между небесными телами, находящимися в разных концах Вселенной.

За прошедшее столетие появились десятки тысяч публикаций по проблематике межзвёздных перелётов (МП). В последние десятилетия этот массив идей и рассуждений быстро растёт за счёт интернет-ресурсов.

Совсем недавно начались крупные комплексные исследовательские проекты «Икар» (BIS и Tau Zero Foundation) и «100-летний звездолёт» (DARPA).

Кроме того, существует огромный объём информации по работам, которые прямо не направлены на решение проблемы МП, но связаны с её отдельными аспектами или необходимы для её решения. Например, работы по термоядерному синтезу, замкнутым системам жизнеобеспечения, поиску и исследованиям экзопланет.

Возникает задача выработки методологии работы с имеющимся массивом информации и с подходами к рассмотрению вопросов МП. Решение данной задачи требует рассмотрения всего спектра проблематики МП как объекта исследований.

Предлагается несколько классификаций проектов МП. Они выполнены в силу разных основаниий для решения ряда задач. В частности, это классификации по уровню реализуемости проектов и по принципиальным схемам двигательных установок.

Предложены и обоснованы принципы, которые могут быть полезными в исследованиях проблематики МП и при проектировании межзвёздных космических аппаратов.

Приводится систематизированный перечень современных направлений исследований в различных областях науки и техники, обеспечивающих реализацию МП в будущем.

Рассматриваются направления практического использования исследований проблематики МП.


Исторический абрис

В 1911 году К. Э. Циолковский в работе «Исследование мировых пространств реактивными приборами» обнародовал первый технический проект космической ракеты для преодоления межзвёздных расстояний: «…поэтому, если бы можно было достаточно ускорить разложение радия или других радиоактивных тел, каковы, вероятно, все тела, то употребление его могло бы давать при одинаковых прочих условиях такую скорость реактивного прибора, при которой достижение ближайшего солнца (звезды) сократится до 10-40 лет.Тогда, чтобы ракета весом в тонну разорвала все связи с солнечной системой, довольно было бы щепотки радия».

До 50-х годов XX века проекты МП в принципе повторяли соображения К. Э. Циолковского. После создания ядерного оружия стали появляться более детальные проекты межзвёздных полётов, в частности проработки Ф. Дайсона на основе проекта ядерного взрыволёта «Орион», работы Л. Р. Шеферда.

Предсказанная П. Дираком и открытая в 1933 году аннигиляция дала толчок для исследований динамики релятивистских ракет.

Значительным продвижением работ в области МП стал проект Британского Межпланетного Общества (British Interplanetary Society, BIS) «Дедал» («Daedalus») в 1973-1978 годах. Результатом стал сам проект межзвёздного зонда и большое число других проектов и работ по исследованию различных частных аспектов МП.

Сегодня реализуются крупные комплексные исследовательские проекты «Икар» (BIS и Tau Zero Foundation) и «100-летний звездолёт» (DARPA).

За прошедшее со времён К. Э. Циолковского столетие появились тысячи публикаций по проблематике межзвёздных перелётов (МП). База AIAA по ключевому слову «interstellar» даёт, например, более тысячи публикаций. В последние десятилетия этот массив идей и рассуждений быстро растёт за счёт интернет-ресурсов.

Таким образом, появляется задача разработки вопросов методологии как работы с имеющимся массивом информации, так и с самими подходами к рассмотрению вопросов МП. Возникает необходимость рассматривать саму по себе проблематику МП в качестве объекта исследований.


Технология преодоления межзвёздного расстояния может быть выработана в будущем, но обращение к данной проблеме и её осмысление могут принести интеллектуальные плоды уже сегодня

Вопросы классификаций

Начинать приходится с классификации, упорядочивания имеющегося массива Проектов МП. С этой целью можно ввести понятие Проекта межзвёздного перелёта (МП) . Проект МП - описание техники, способной преодолеть межзвёздное расстояние, - содержит два обязательных элемента: метод (методы) движения и время полёта.

Конструктивно любой проект межзвёздного перелёта можно разделить на блок двигательной установки (ДУ) и блок полезной нагрузки (ПН). Ключевым элементом любого проекта МП является принципиальная схема ДУ.


Упрощённая классификация принципиальных схем ДУ. В её основе - классификация по используемым физическим принципам движения

Что касается ПН, то в фантастических произведениях перебраны, а иногда и подробно описаны множество вариантов ПН.

Также полезно классифицировать проекты МП по уровню реалистичности, который хорошо коррелирует с уровнем отработки той или иной схемы МП. Соответствующая классификация приведена в табл. 1.

Таблица 1. Классификация проектов МП по уровню реалистичности

Уровень

Краткое описание

Пример

Для разработки ДУ используется существующая технология

Ядерно-импульсная ДУ

Для разработки ДУ используется экстраполяция
существующей технологии

Существует признанная теория процессов, используемых в ДУ, но нет разработанных технологий

Аннигиляционные ДУ

Существуют теоретические предпосылки, но их практическое использование не ясно

Радиопередача человека (мозга)

Проект ДУ основан на гипотетических положениях

«Кротовые норы»

При реализации проекта ДУ нарушаются либо изменяются фундаментальные физические законы

Телепортация. «Гравицаппа»

Данная классификация является первым фильтром отбора Проектов МП для дальнейшей разработки/исследования. Выбрав уровень, можно не рассматривать те проекты, которые расположены ниже.

Помимо рассмотрения конкретных проектов МП, необходимо учитывать огромный объём информации по работам, которые прямо не направлены на решение проблемы МП, но связаны с ней либо просто необходимы для её решения. Это, например, работы по термоядерному синтезу, замкнутым системам жизнеобеспечения, поиску и исследованиям экзопланет. Так формируется база знаний, которая развивается вне зависимости от решения задач, непосредственно связанных с проектированием МП.

В табл. 2 приведена упрощённая классификация направлений, формирующих базу знаний, необходимую для исследований проблематики МП.

Таблица 2. База знаний по проблематике МП

1. Общие аспекты МП

1.1. Мировоззренческие, социальные и экономические аспекты МП

1.2. Стратегические и тактические вопросы организации МП

1.3. Вопросы SETI

1.4. Отражение МП в художественной литературе, фильмах и компьютерных играх

2. Астрономия

2.1. Ближайшие звёзды

2.2. Экзопланеты

2.3. Межзвёздная среда

2.4. Галактическое космическое излучение

2.5. Астрофизика и космология

3. Динамика МП

3.1. Классическая динамика

3.2. Релятивистская динамика

3.3. Управление и навигация

4. Двигатели для МП

4.1. Ядерная физика

4.2. Физика лазеров

4.3. Электротехника

4.4. Сверхпроводимость

4.5. Теплотехника (радиаторы)

4.6. Конструкционные материалы

5.1. Большие конструкции

5.2. Система жизнеобеспечения

5.3. Искусственная гравитация

5.4. Радиационная защита

5.5. Система связи

5.6. Вычислительная техника

5.7. Средства освоения звёздной системы

6.Обеспечение полёта

6.1. Транспортные космические системы

6.2. Внеземные базы

6.3. Внешние ресурсы

Принципы исследований проблематики МП

Принцип - это руководящее положение, основное правило, установка для какой-либо деятельности. В то же время, при всей своей значимости, принципы не носят категорического характера, можно отказаться от любого принципа либо модифицировать его, но при этом важно понимать и объяснять причины такого отказа.

Формулировка и набор принципов полезны как для работы одного исследования, так и для координации разных работ. Принципы, так же как и классификации, могут использоваться для быстрой фильтрации заведомо бесперспективных направлений. При этом исследователь может выбирать уровень «жёсткости» требований, предъявляемых к реалистичности проекта.

Можно предложить следующий набор и общие формулировки принципов для разработки МП:

1. Принцип опоры на предвидимые технологии.

Этот принцип был постулирован для проекта «Дедал». В его основе два положения:

  • на тех технологиях, которые существовали тогда (в 1973 году), и тех, которые существуют сегодня, межзвёздный полёт невозможен;
  • опора на технологии, которые ещё не разработаны, на практике означает отказ от работы.

Предвидимые технологии теоретически обоснованы, их реализация требует только времени и денег.

2. Принцип отказа от « волшебной палочки» прогресса.

Этот принцип означает отказ от часто применяемого подхода к сложным задачам. От рассмотрения таких задач часто уклоняются под предлогом того, что их решения могут быть найдены в будущем. Однако нельзя перекладывать решение вопроса на будущее без пояснений возможности получения такого решения.

3. Принцип «финансовой абстракции» .

Нет смысла оценивать финансовые затраты на реализацию того или иного МП, так как невозможно определить экономическую ситуацию на сотню лет вперёд.

4. « Гуманитарный» п ринцип .

Условия жизни на борту корабля должны быть не хуже средних условий жизни на Земле.

5. Принцип отказа от возвращения.

Возвращение на Землю экипажа космического корабля является главной целью любого пилотируемого полёта. Но это касается только полётов внутри Солнечной системы. Для МП, из-за больших дистанций и длительности полёта, возвращение не только технически недостижимо (см. Принцип 1), но и лишено смысла.

Мотивации полёта обратно к Земле практически нет. Конечно, ностальгия по месту происхождения неизбежна, но сам-то человек вернуться не сможет, до Земли долетят только его потомки. И выбор между освоением новых миров или возвращением своих потомков на Землю, скорее, будет сделан в пользу первого варианта.

Для того чтобы изучить и освоить огромную Галактику, Земле не надо посылать межзвёздные корабли к каждой звезде: достаточно заселить десяток планетных систем в ближайших звёздных окрестностях - в радиусе примерно 50 световых лет.

Схема ближайших звёздных окрестностей Солнца и возможных маршрутов первых МП. Зелёный пунктир - возможные направления межзвёздных перелётов из Солнечной системы, красный - с уже освоенных систем. Числа - дистанции в световых годах

Дальнейшее движение осуществляется с освоенных систем новыми «дочерними» цивилизациями. А для Земли, после освоения окружающих её звёздных систем, Космическая эра, эра пространственной экспансии, заканчивается. Именно эта цель - преодоление межзвёздного пространства пилотируемыми аппаратами и освоение ближайших звёздных систем - и является «конечной» для земной космонавтики.

О практическом использовании исследований проблематики МП

Межзвёздные перелёты - дело далёкого (но предвидимого) будущего. Вместе с тем хотелось бы видеть практические результаты исследований уже в настоящем. Помимо несомненного познавательного и мировоззренческого значения, исследования проблематики МП могут эффективно использоваться в образовательном процессе. Эффективность такого использования определяется спецификой проблемы - опорой на синтез знаний в самых разных областях науки и техники.

Литература

1. Циолковский К. Э. Исследование мировых пространств реактивными приборами / Труды по ракетной технике. М.: Оборонгиз, 1947. 368 с.

2. Shepherd, L. R. Interstellar flight. J. Brit. Int. Soc., 1952.V.11. P. 149-167.

3. Зенгер Е. К механике фотонных ракет. М.: Иностранная литература,1958. 142 с.

4. Project Daedalus: Demonstrating the Engineering Feasibility of Interstellar Travel. The British Interplanetary Society, 2003. 390 p.

Поделитесь с друзьями или сохраните для себя:

Загрузка...